Evidence for a hypothalamic oxytocin-sensitive pattern-generating network governing oxytocin neurons in vitro.

نویسندگان

  • P Jourdain
  • J M Israel
  • B Dupouy
  • S H Oliet
  • M Allard
  • S Vitiello
  • D T Theodosis
  • D A Poulain
چکیده

During lactation and parturition, magnocellular oxytocin (OT) neurons display a characteristic bursting electrical activity responsible for pulsatile OT release. We investigated this activity using hypothalamic organotypic slice cultures enriched in magnocellular OT neurons. As shown here, the neurons are functional and actively secrete amidated OT into the cultures. Intracellular recordings were made from 23 spontaneously bursting and 28 slow irregular neurons, all identified as oxytocinergic with biocytin and immunocytochemistry. The bursting electrical activity was similar to that described in vivo and was characterized by bursts of action potentials (20.1 +/- 4.3 Hz) lasting approximately 6 sec, over an irregular background activity. OT (0.1-1 microM), added to the medium, increased burst frequency, reducing interburst intervals by 70%. The peptide also triggered bursting in 27% of nonbursting neurons. These effects were mimicked by the oxytocin receptor (OTR) agonist [Thr4, Gly7]-OT and inhibited by the OTR antagonist desGly-NH2d(CH2)5[D-Tyr2,Thr4]OVT. Burst rhythmicity was independent of membrane potential. Hyperpolarization of the cells unmasked volleys of afferent EPSPs underlying the bursts, which were blocked by CNQX, an AMPA/kainate receptor antagonist. Our results reveal that OT neurons are part of a hypothalamic rhythmic network in which a glutamatergic input governs burst generation. OT neurons, in turn, exert a positive feedback on their afferent drive through the release of OT.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prolactin secretory rhythm of mated rats induced by a single injection of oxytocin.

Mating or vaginocervical stimulation [copulatory stimulus (CS)] induces two daily surges of the hormone prolactin (PRL) in rats. This unique secretory pattern of PRL surges is characteristic for the first half of pregnancy and is also present in ovariectomized (OVX) rats. Studies have shown that CS additionally provokes an acute release of the hormone oxytocin (OT). In this study, we tested whe...

متن کامل

An Obligate Role of Oxytocin Neurons in Diet Induced Energy Expenditure

Oxytocin neurons represent one of the major subsets of neurons in the paraventricular hypothalamus (PVH), a critical brain region for energy homeostasis. Despite substantial evidence supporting a role of oxytocin in body weight regulation, it remains controversial whether oxytocin neurons directly regulate body weight homeostasis, feeding or energy expenditure. Pharmacologic doses of oxytocin s...

متن کامل

Center Role of the Oxytocin-Secreting System in Neuroendocrine-Immune Network Revisited

The hypothalamic neuroendocrine system has extensive and bidirectional interactions with immune system. In parallel with the hypothalamic-pituitary-adrenal axis, the oxytocin-secreting system composed of hypothalamic oxytocin neurons and their associated neural tissues has also emerged as a major part of the neuroendocrine center that regulates immunologic activities of living organisms. This o...

متن کامل

Development of oxytocin- and vasopressin-network in the supraoptic and paraventricular nuclei of fetal sheep.

The hypothalamic supraoptic and paraventricular nuclei consist of oxytocin and arginine vasopressin synthesizing neurons that send projections to the neurohypophysis. A growing body of evidence in adult animals and young animals at near term confirmed the structure and function in the vasopressinergic and oxytocinergic network. However, whether those distinctive neural networks are formed befor...

متن کامل

Oxytocin, Feeding, and Satiety

Oxytocin neurons have a physiological role in food intake and energy balance. Central administration of oxytocin is powerfully anorexigenic, reducing food intake and meal duration. The central mechanisms underlying this effect of oxytocin have become better understood in the past few years. Parvocellular neurons of the paraventricular nucleus project to the caudal brainstem to regulate feeding ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 17  شماره 

صفحات  -

تاریخ انتشار 1998